
A Whirlwind Tour of
Basic Cryptographic Tools

and their Applications

What kind of Information Security Threats
exist ?

Broad
Classification:

Leakage

Tampering

Vandalism

! Confidentiality (for your eyes only): Against
Eavesdropping, Sniffing, Tracing

! Integrity (has not been altered) Against Tampering

! Authentication (you are who you say you are) Against
Impersonation, Masquerading, Spoofing

! Access control (only the intended can “use” the resources)
Against unauthorized use/ abuse of resources

! Non-repudiation (the order is final) Against Denying One’s
Act, backing away from a deal

! Availability Against DoS Attacks

Different Goals/ Services provided by Security

Cryptography

More Terminology
! Encryption: converting plaintext to ciphertext
! Decryption: converting ciphertext to plaintext
! Cryptanalysis: to break the code by analyzing the the

algorithm/system
! Brute-force attack: Enumerate over all the possible keys
! Types of attacks on Encrypted Messages by Cryptanalyst:

! Ciphertext only: Given Ciphertext only to derive Plaintext/key
! Known Plaintext: Given <Plaintext,Ciphertext> pair(s) to derive

the key, e.g. “From:” at the beginning of each email
! Chosen Plaintext: The attacker has the ability to inject chosen

plaintext and observe the ciphertext outcome, e.g. send an
email of chosen words to the victim while sniffing at the cipher

Increasing
knowledge/level of
control
by the Cryptanalyst

Decryption: Plain = (cipher – key) mod 26

XMCKLA EJKAWO FECIFE WSNZIP PXPKIY URMZHI JZTLBC YLGDYJ HTSVTV
RRYYEG EXNCGA GGQVRF FHZCIB EWLGGR BZXQDQ DGGIAK YHJYEQ TDLCQT
HZBSIZ IRZDYS RBYJFZ AIRCWI UCVXTW YKPQMK CKHVEX VXYVCS WOGAAZ
OUVVON GCNEVR LMBLYB SBDCDC PCGVJX QXAUIP PXZQIJ JIUWYH COVWMJ
UZOJHL DWHPER UBSRUJ HGAAPR CRWVHI FRNTQW AJVWRT ACAKRD OZKIIB
VIQGBK IJCWHF GTTSSE EXFIPJ KICASQ IOUQTP ZSGXGH YTYCTI BAZSTN

A Classical Encryption Scheme:
One-time Pad

H E L L O plain
7 (H) 4 (E) 11 (L) 11 (L) 14 (O) plain

+ 23 (X) 12 (M) 2 (C) 10 (K) 11 (L) key
= 30 16 13 21 25 plain + key
= 4 (E) 16 (Q) 13 (N) 21 (V) 25 (Z)(plain + key) mod 26

E Q N V Z → cipher

Encryption:

! Achieve “Perfect Secrecy”: i.e. the Ciphertext alone does NOT
tell you Any Information about the Plaintext
! Can’t be cracked even with Infinite Computational Power:

EQVNZ -> LATER with another key = TQURI

Classification of Cryptosystems and
Terminology

! Secret-Key
! Conventional
! Classical
! Symmetric
! Symmetric-key

! Public-Key
! Asymmetric

Symmetric (aka Secret-Key)
Cryptosystems

A Secret-key (aka Symmetric Key) Cryptosystem

! The Same key is used for encryption as well as decryption ; That’s why
it is also also “symmetric key” system

! The encryption/decryption algorithm is sometimes referred as the
“cipher”

Block Cipher vs. Stream Cipher
! Process the message block by

block of constant size, e.g. 64 bits
! Each block goes through multiple

rounds of permutation and
substitution

! Mixed operators, data or key
dependent rotation/shifting
=>permutation

! Key dependent substitution (S-
boxes) =>substitution

! More complex key scheduling: part
of the key is used to generate the
“per-round key” for each round

! Process the message bit by bit (as a
stream) or byte-by-byte

! Typically have a (pseudo) random
stream key

! combined (“Å” XOR) with plaintext bit
by bit

! randomness of stream key completely
destroys any statistically properties in
the message
" Ci = Mi Å Si
Ci = i-th bit of ciphertext

Mi = i-th bit of plaintext

Si = i-th bit of stream key

! what could be simpler, faster !!!!
! but must never reuse stream key

" otherwise can remove effect
and recover messages

General Example of a Block Cipher

Stream Cipher

The Å“XOR” function is its own Inverse

Given: Ci = Mi Å Si ;
Ci Å Si = (Mi Å Si) Å Si = Mi Å (Si Å Si) = Mi Å 0 = Mi
because
A Å A = 0 for all A and
A Å 0 = A for all A

A B AÅB

0 0 0

0 1 1

1 0 1

1 1 0

A A AÅA

0 0 0

1 1 0

A 0 AÅ0

0 0 0

1 0 1

Minimum Key-length requirement
! Recommended by an NAS/NRC expert panel in 1996:

! What should be the corresponding Secure key lengths in 2020 ?

What should we do then ?
! Increase the effective key-length of DES by doing multiple DES with

different keys => also mean slow down the encryption for multiple times
=> Here comes the “Triple DES” or 3DES where C = EK3 [DK2 [EK1 [P]]]

! The actual standard requires K3 to be equal to K1 => 112-bit key-length
which is deemed to be sufficiently secure

! The use of E-E-E would still have worked. But using E-D-E instead of E-E-E
enhance backward compatibility with DES by setting K1 equal to K2

! If a 112-bit key is already deemed to be secure enough, why not just
doing DES encryption twice with 2 different keys, i.e. C = EK2 [EK1 [P]]?

! Because this is susceptible to a “Meet-in-the-Middle” attack which
reduces the effective key-length to about 57-bit only.

Why not 2DES ?

E EP C

K1 K2

Meet-in-the-Middle Attack on 2DES
Assume the hacker has a few <plaintext,ciphertext> pairs, e.g. <p1,c1>,

<p2,c2>, <p3,c3> where ci = EK2 [EK1 [pi]]
Key Observation: DK2 [c1] = EK1 [p1] if K1 and K2 are the right keys.
Attack Steps:
! First make Table A with 256 entries, where each entry consists of a DES

key K and the result r of applying that key to encrypt p1. Then sort the
table in numerical order by r

! Make Table B with 256 entries, where each entry consists of a DES key
K and the result r of applying that key to decrypt c1. Also sort Table B in
numerical order by r

! Search through the sorted tables to find matching entries <KA,r> from
Table A and <KB,r> from Table B. Each match provides KA as candidate
K1 and KB as a candidate K2 because DKB [c1] = EKA [p1]

! If multiple candidate pairs of KA and KB are found in Step 3, use each
candidate key-pair to encrypt p2, p3, …etc to see if it results in c2,
c3,…; The “real” key-pair will always work ; the other “coincident” key-
pairs will almost surely fail on at least one of the other <pi,ci> pairs

Meet-in-the-Middle Attack on 2DES (cont’d)

Meet-in-the-Middle Attack on 2DES (cont’d)

NIST Contest for Advanced Encryption Standard
(AES)

! NIST had an open call for proposals, actually a contest, in 1997
" 21 submissions from all over the world ; 15 fulfilled all the requirement

(8 from North America, 4 from Europe, 2 from Asia, 1 from Australia)
" Narrow down to five final candidates in August 1999:

! Rijndael (Belgium), Serpent (England, Israel, Norway), MARS
(IBM) , Twofish (US), RC6 (US)

! After vigorous evaluation and testing, Rijndael [rain´ dow] was selected as
the winner in 2000 and Standardized as AES effective May 2002

! By two Belgium cryptographers: Joan Daeman and Vincent Rijmen
! AES is expected to replace DES and 3DES as “The Standard” encryption

work-horse world-wide

Overview of AES

4 transformations for Each
Round:
" Substitute Bytes
" Shift Rows
" Mix Columns
" Add Round Key

! Number of rounds depends
on key length (10,12,14
rounds for 128,192,256-bit
keys respectively

Modes of Operation for Block Cipher
! Break the piece of plaintext into 64-bit blocks ; pad the last block to 64 bit
! Basic Mode of Operation: Use Electronic Code Book (ECB)

" Each block of plaintext is encrypted independently using the same key
" Repeated plaintext block will produce the same ciphertext block

=> can leak information
" Blockwise swapping of ciphertext may still produce meaningful output

upon decryption
" Mainly used for sending a small number of blocks of information only

Cipher Block Chaining (CBC) Mode
! Input to algorithm is the XOR of current plaintext block and

preceding ciphertext block
! Repeating patterns are not exposed
! But what if the ciphertext is corrupted or lost during transmission ?

IV stands for
Initialization Vector ;

Sender and Receiver
Need to share the Key
and IV in advance ;

An encrypted IV can
be
Sent in advance

If IV is sent in clear,
Attacker can
manipulate
P1 and compensate
by
modifying the IV

Insecurity of
MAC-then-Encrypt mode of

Cipher Block Chaining (CBC)
! Which one is better: MAC-then-Encrypt or Encrypt-then-MAC ?
! TLS Ver1.1 chose MAC-then-Encrypt (MtE), namely

1. Authenticate (protect the integrity of) the plaintext (using HMAC) ;
2. Add the HMAC code at the end of the message ;
3. Pad the message length to the required block-length ;
4. Encrypt the resultant block using a block cipher, e.g. AES ;

! Unfortunately, such implementations of MAC-then-Encrypt mode of
CBC modes, in TLS-1.1, 1.2, are subject to various variants of
Padding-Oracles+Timing attacks,
" e.g. Vaudenay Padding Oracle (2002), Lucky 13 (2013), BEAST

(2011), etc,
https://blog.cloudflare.com/padding-oracles-and-the-decline-of-cbc-mode-ciphersuites/

" CBC MtE modes have been depreciated (i.e. removed,
disallowed) by new TLS standards (v1.3)

" https://www.cloudflare.com/learning-resources/tls-1-3/

Cipher FeedBack (CFB) Mode

Encrypt

Output FeedBack (OFB)

Encrypt

Counter (CTR)

Birthday Attacks on
CBC, CFB, OFB, CTR

! For a lot of modes of operations for Block Cipher, we must ensure
not to reuse key/ counter values for different plaintexts, otherwise
information can be leaked ;

=> CBC, CFB, OFB and CTR modes of operation for Block ciphers
are subject to so-called Birthday Attacks:
" To stay safe, re-keying is required before encrypting 2(block-size / 2)

of input blocks, e.g. for DES, or 3DES, it means rekeying more
frequent than 232� input blocks

Refer to the following for further details:
" Sweet32 paper in CCS 2016 https://sweet32.info/SWEET32_CCS16.pdf
" D. McGrew 2012 paper https://eprint.iacr.org/2012/623

https://sweet32.info/SWEET32_CCS16.pdf
https://eprint.iacr.org/2012/623

Key Distribution Problem for Secret Key
Crypto-systems

Key Distribution

! Both parties must have the secret key
! Key is changed frequently
! Requires either manual delivery of keys, or a third-party

encrypted channel
! Most effective method is a Key Distribution Center (e.g.

Kerberos)
! More later in the course…

Location of Encryption Devices

Message Authentication Code
Hash Function and Message Digest

What is Message Authentication ?

! Procedure that allows communicating parties to verify that received
messages are authentic, namely
" source is authentic – not from masquerading
" contents unaltered – message has not been modified
" timely sequencing – the message is not a replay of a previously

sent one

Ways to provide Message Authentication
! Message Authentication via Conventional Encryption

" Only the sender and receiver should share a key ;
" Include a time-stamp or “nonce” to prevent replay attack
" Implicitly assume the receiver can recognize if the output from

the decryption unit is garbage or not ;
! easy if they know the message has some specific format, e.g.

English
! May be difficult if the original plaintext are random binary

data =>need to impose some structure, e.g. Checksum
! Message Authentication without Message Encryption (thus no

message confidentiality)
" An authentication tag (aka Message Authentication Code or

MAC) is generated and appended to each message where
! the MAC is computed as a publicly known function F, of the

message M and a shared secret key K:
• MAC = F(K, M)

" A one-way Hash function can be used as F

Ensuring Message Authenticity using a MAC

Message Authentication Code

! Receiver assured that message is not altered – no modification
! Receiver assured that the message is from the alleged sender –

no masquerading
! Include a sequence number, assured proper sequence – no

replay

CBC-residue as MAC

CBC-residue, aka DAC = Data Authentication Code

One-Way Hash Function
! Hash function accepts a variable size message M as input and

produces a fixed-size message digest H(M) as output
! Message digest is sent with the message for authentication
! Produces a fingerprint of the message
! No secret key is involved

One-way Hash Function Requirements

1. H can be applied to a block of data of any size
2. H produces a fixed length output
3. H(x) is relatively easy to compute
4. For any given code h, it is computationally infeasible to find x such

that H(x) = h (i.e. safe against the so-called 1st preimage attack)
5. For any given block x, it is computationally infeasible to find y ≠ x with

H(y) = H(x) (i.e. safe against the so-called 2nd preimage attack)
6. It is computationally infeasible to find any pair (x,y) such that H(x) =

H(y)

one way

weak collision resistance
strong collision resistance
birthday attack

weak

How likely to have Hash output collisions ?

! Since N >> M , (and therefore) n >> m, collisions are
inevitable no matter how secure the one-way function H()
is.

Set of Messages of
up to N-bit long, i.e.
There are as many as

n = 2Nmessages in this set

H()
Input:

Output:

Set of Message-digests of
M-bit long, i.e.there are
at most m= 2M digests

in this set

The Birthday Paradox
! In a room with n people, what is the probability that we will

find at least 2 people who have the same birthday (there
are m = 365 possible choices of birthday)?

An approximate analysis:
" Assuming birthdays are uniformly distributed over the

entire year. For any given pair of people, the possibly of
them having the same birthday is 1/m = 1/365 ;

" There are nC2 = n(n-1)/ 2 ways to select a pair out of n
people

" Let Pcollision be the Probability of at least one collision,
! Pcollision approx. = n(n-1)/2 * 1/m = n(n-1)/2m ;

" Pcollision > ½ when n >= 20
" In general, Pcollision > ½ when n becomes >= √m
" The approximation is not good when n approaches m

! Where is the approximation ?

How difficult to find a Hash collision ?
How secure is a one-way hash with 64-bit output, e.g. CBC-

DES ?

! Based on the property of a good hash function, the hash
output of any input string should be uniformly distributed
over the hash output space of size m=264

" This is analogous to the fact that the birthday of any given
person is uniformly distributed over any days within a year
(i.e. output space of size m = 365)

! Thus, according to the Birthday Paradox, if no. of all possible
outcomes = m, we only need to try about n = √m inputs to
the hash function to have a good chance to find a collision,
e.g.

For, a hash function with 64-bit output, m=264

=> it only takes about √m = 232 tries to find a pair of inputs
which will produce the same hash output, i.e. a collision

Birthday Attack on Message Digest
Fo

rg
er

y

H
as

 th
e

sa
m

e
H

as
h

EK

Compare ?

Using CBC-residue as Message Authentication Code

Birthday Attacks
! Birthday attack can proceed as follows:

" opponent generates 232 variations of a valid message, all
with essentially the same meaning ; this is “doable” given
current technology.

" opponent also generates 232 variations of a desired
fraudulent message

" two sets of messages are compared to find a pair with
same hash output (by argument similar to the Birthday
paradox, this probability > 0.5)

" have user (the victim) sign the valid message, but sent
the forgery message which will have a valid message
digest

! Conclusion is that we need to use longer MACs

! BTW, how can we generate 232 variations of a letter carrying
the same meaning ?
Just 2 choices of wording at 32 different places.

How to generate large no. of messages of each
type to get the necessary message digest

collision to pull off a B-day attack ?

Use a Secure Hash Function to commit an
Answer/Choice without disclosing it (yet)

Challenge:

Alice: How many COVID-19 cases will there be tomorrow ?

Bob: I actually know the Secret Answer to your question, but I am not allowed to
tell you right now !

Alice: Can you prove that you really know the Secret Answer in advance ?

Bob: Here is Hash output of the Secret Answer
= Hash(My Answer, followed by Some Random Bits) ;
Hold onto this Hash output and wait till tomorrow. You will agree I indeed know

this Secret Answer in advance.

Computational Cost Comparison

The SHA-2 Family
! SHA-2 is a set of cryptographic hash functions:

" SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224,SHA-512/256
! Designed by NSA and published by NIST in 2001 as a U.S. FIPS (Federal

Information Processing Standard).
! SHA-2 bears some similarities of SHA-1, but contains some key changes

" Attacks on SHA-1 have not been successfully extended to SHA-2.

Yes

The NIST SHA-3 Competition (2006-2012)
http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
!On Dec. 9, 2010, the Final FIVE candidates for the Round 3 of the
competition were announced:

" http://csrc.nist.gov/groups/ST/hash/sha-
3/Round3/documents/Email_Announcing_Finalists.pdf

" http://csrc.nist.gov/groups/ST/hash/sha-
3/Round3/submissions_rnd3.html

!The Winning algorithm: Keccak, (pronounced “catch-ack”) was
announced on Oct 2, 2012, to be called SHA-3 in Standards ;

" Designed by a team of researchers from Belgium and Italy
" http://keccak.noekeon.org
" NSA believes both SHA-2 and SHA-3 are secure and can be used

in practice.
! Since SHA-2 and SHA-3 differ substantially in their designs and

theory, this diversity can provide system designers a fallback
solution in case one of them is broken in the future.

!SHA-3 approved as a new hashing standard by NIST of U.S..
" Published as FP202 on Aug. 5, 2015.

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/documents/Email_Announcing_Finalists.pdf
http://csrc.nist.gov/groups/ST/hash/sha-3/Round3/submissions_rnd3.html
http://keccak.noekeon.org

Complementing SHA2

! SHA3 is expected to deployed into a world full of
SHA2 implementations

! SHA2 still looks strong
! NIST expect the standards to coexist.
! SHA3 should complement SHA2.

" Good in different environments
" Susceptible to different analytical insights

Keccak (SHA3) is fundamentally different from
SHA2. Its performance properties and
implementation tradeoffs have little in common with
SHA2.

Comparison of SHA functions

The Future of Hash Security is Diversity

A Hash Tree (Merkle Tree)

HMAC

By XORing key with
const1 and const2,
we have pseudo-
randomly generated
two new keys from
the original key

HMAC

! Effort to develop a MAC derived from a cryptographic hash codes
such as SHA-256

! Executes faster in software
! No export restrictions
! Relies on a secret key
! RFC 2104 list design objectives and
! Provable security properties
! Used in IPsec, TLS
! Can use different digest functions as a component, e.g.

" HMAC-SHA256 , HMAC-SHA3 ;
! Informational RFC6151 (circa 2011) concluded that: Although the

security of MD5 hash function itself is severely compromised, the
currently known “attacks on HMAC-MD5 do not seem to indicate a
practical vulnerability when used as a message authentication code,”
but “for new protocol design, a ciphersuite with HMAC-MD5 should
NOT be included.”

Public Key Cryptography

Motivation for Public Key Cryptography
! In symmetric key or secret key cryptosystems, the

communication parties must have some pre-share secret, i.e.
the master key

! Distribution of such keys in a secure and scalable manner is a
major problem

! The introduction of a trust third
party, namely the Key Distribution
Center (KDC) solves the problem
partially by reducing the number

of master keys from O(N2) to
O(N) but still inconvenient and

KDC can become the single point
of failure and/or performance

bottleneck (more details later)
! Symmetric key system also
cannot provide non-repudiation

The Concept of Public Key Cryptography

To send Nola a secret message,
any sender first finds Nola’s

Public Key, e.g. from a public
directory, and uses it for
encrypting the message.

Only the person who has Nola’s
private key (presumably Nola’s

herself) can decrypt the
message successfully

•Note: No need for secure
distribution of pre-shared secret

key anymore

! Every participant has a pair of keys: the Public Key and Private Key
! The Public key is published or sent to everyone else in the community

openly
! The Private key is kept secret by its owner
! Plaintext encrypted by A’s public key can only be decrypted by A’s

private key
! Some Ciphertext can be decrypted by A’s public key if and only if it has

been encrypted by A’s private key

The Concept of Public Key Cryptography
(cont’d)

Hmm…if I can decrypt successfully an incoming message with Vera’s public
key, the message must have been encrypted with Vera’s private key.

Since Vera is required (e.g. by law) to keep her private key secret to herself,
no one but Vera could have encrypted (and sent) the message

=> This provides the notion of digital signature and thus non-repudiation
service

Digital Signature (cont’d)

! Instead of signing the entire message, one can sign the digest of
the message to improve performance because public key
algorithms are much slower than secret key ones. One should
avoid using public key algorithms to encrypt large amount of data
(long messages)

Use Public-key encryption to “seal” a digital
envelope

! The sender picks a “secret” Session Key to encrypt the long message
using a secret key algorithm, e.g. AES.

! By encrypting the session key with the Recipient’s public key, the
session key can be delivered securely to the recipient without any pre-
shared secret between the 2 parties

! Conversely, we can consider this as doing a secure session-key
exchange using public key encryption

RSA Algorithm

! Ron Rivest, Adi Shamir, Len Adleman – found the
functions and published the results in 1978:

! D[E[m]] = m = E[D[m]]
! Most widely accepted and implemented approach to

public key encryption
! Block cipher where m = plaintext ; and c =ciphertext

are integers, between 0 <= m , c <= n-1 for some n
! Following form:

c = me mod n
m = cd mod n
Public key is (n,e). Private key is (n,d).

This is the D[]
This is the E[]

XA XB

YA YB

Diffie-Hellman Key Exchange
! Diffie-Hellman key-exchange enables two users to establish a shared

secret key securely using an open/ public communications channel.

! (YB)XA mod q = aXBXA mod q =Secret = aXAXB mod q = (YA) XB mod q

Pu
bl

ic
 c

ha
nn

el
:

an
yo

ne
 c

an
 li

st
en

 to

=

How secure is Diffie-Hellman Key
Exchange ?

! It relies on the fact that “Discrete Logarithm” is a computationally
difficult problem, i.e.:

Knowing that YA = aXA mod q and the values of a, q and YA

It is still computationally difficult to find XA

! But still subject to Man-in-the-Middle Attack !! Because Alice does not
know for sure if it’s actually Bob who is sending her the YB

" Remedy: Published those public numbers, i.e. a, q and YA , YB in
a “Trusted, publicly accessible directory for each person”
! This also allows Alice to send Bob an encrypted message

even when he is currently offline.
" But how can you be sure that you are looking at the directory

hosted by the “true trusted directory server” ?

Man-in-the-middle (MITM) Attack

! DH protocol:
1. Alice -> Bob: ax (mod q)
2. Bob -> Alice: ay (mod q)

! Attack scenario

! Vulnerability: lack of what?

Other Public Key Algorithms
! 1978: Merkle/Hellman (Knapsack), subsequently found to be insecure
! 1985: El Gamal (Discrete logarithm Problem)
! 1985: Miller/Koblitz (Elliptic curves)
! 1991: Digital Signature Standard (DSS) (Discrete logarithm Problem)

And many others, too

Digital Signature Standard (DSS)
! In 1991, NIST in US standardized

Digital Signature Standard (DSS).
SHA-1 is used to first compute
the message digest which is then
signed by the Digital Signature
Algorithm (DSA).

! DSA is based on a variant of El
Gamal digital signature, thus also
inherits it’s “size-doubling”
property => SHA-1 digest is 160-
bit long, the DSA signature is 320
bits long: signature = (r,s).

! Since DSA does not support
encryption by design, it avoids
US technology-export concerns.

Elliptic Curve Cryptosystems (ECC)
! Independent proposed by Koblitz (U. of Washington) and Miller (IBM) in 1985
! Depends on the difficulty of the elliptic curve logarithm problem

" fastest method is “Pollard rho method”
" Best attacks for discrete logarithm problem do NOT apply to elliptic curve

logarithm problem
! The first true alternative for RSA
! ECC is beginning to challenge RSA in practical deployment in selected

areas: embedded, wireless/mobile systems
! It is a family of cryptosystems instead of a single one:

" ECC replaces modulo exponentiation by elliptic curve multiplication (and
modulo multiplication replaced by ECC addition)

" Apply directly to Diffie-Hellman, El Gamal and DSA to yield ECC Diffie-
Hellman (ECDH), ECC-ElGamal and ECC-DSA algorithms to support
key exchange, encryption and digital signature respectively

! Certicom (http://www.certicom.com, a canadian-based company, is one of
the leading companies for ECC commercialization

http://www.certicom.com/

ECC Vs. RSA
ECC

! Shorter keys (equivalent key sizes:
~150bits Vs. 1024bits of RSA) and
thus, shorter signature as well.

! Fast and compact implementations,
especially in hardware

=> Advantageous in environments with
limited bandwidth and storage, e.g.
wireless applications, smartcards,
embedded systems

! Shorter history of cryptanalysis (since
early 90’s)

! Complex mathematical description
! No patents for the cryptosystems

themselves, but many on the
implementation optimization

! Shorter signature generation time
! Shorter key generation time
! Larger no. of operations for attacks

against the algorithm

RSA
! Proven technology,
! Widely deployed and used in a

large set of general applications
! Efficient software implementation
! Longer history of cryptanalysis

(since late 70’s)
! Patent expired in 2000
! Shorter signature verification time
! Larger Memory requirements for

attacks against the algorithm

ECC Vs. RSA (cont’d):
Equivalent Key-size to support same level of Security

Elliptic Curve PKC

Key
Size

MIPS-Years
to Crack

150 3.8 x 1010

205 7.1 x 1018

234 1.6 x 1028

RSA PKC

Key Size MIPS-Years to
Crack

512 3 x 104

768 2 x 108

1024 3 x 1011

1280 1 x 1014

1536 3 x 1016

2048 3 x 1020

Example:
Equivalent key-sizes given current acceptable security level of 4.12x1012 MIPS-year:

RSA : ECC : Symmetric cipher, (e.g. AES) = 1024:163:79
[Ref: 1GHz Pentium PC ~= 250 MIPS]

Relative Performance: ECC Vs. RSA (cont’d)

Estimated Relative Time units of
Digital signing and verification (source: RSA)

RSA DSA ECC ECC with
acceleration

Sign (Private Key) 13 17 7 2
Verify (Public Key) 1 33 19 N/A

Estimated Relative Time units of
Encryption/Decryption and/or Key-exchange (source: RSA)

RSA DH ECC ECC with
acceleration

Initiate contact
(Public Key)

1 32 18 N/A

Receive message
(Private Key)

13 16 6 2

Digital Certificate and
Public Key Infrastructure (PKI)

Certification Authorities

! Certification authority (CA): binds public key to particular entity, E.
! E (person, router) registers its public key with CA.

" E provides “proof of identity” to CA.
" CA creates certificate binding E to its public key.
" certificate containing E’s public key digitally signed by CA –

CA says “this is E’s public key”

Bob’s
public

key K pub
Bob

Bob’s
identifying

information

digital
signature
(encrypt)

CA’s
private

key

K priv
CA

K pub
Bob

certificate for
Bob’s public key,

signed by CACertification
Authority

(CA)

A Conceptual Digital Certificate

Certification Authorities

! When Alice wants Bob’s public key:
! gets Bob’s certificate (from Bob or elsewhere).
! apply CA’s public key to verify Bob’s certificate to confirm

Bob’s public key
! Alice only needs to know the CA’s public key in advance,

e.g. preinstalled by computer/operating system
manufacturer.

Bob’s
public

key K pub
Bob

Signature
verification
(decrypt)

CA’s
public

key
K pub
CA

K pub
Bob

Versions 1 to 3 of an X.509 Digital Certificate

Version 1 and 2

Version 3

Certification Paths – chain of trust
" Apply the certificate paradigm

recursively
! At the beginning, a public-key

user acquires, with high
assurance, the public-keys of
one or more CAs called the
“Trust anchors” or “Root
Certification Authorities”,

! e.g. Public keys of those trust
anchors may be preconfigured
in your browser.

! The public-key user can accept
any public key of a key-pair
holder provided that a trusted
certification path exists from a
trust anchor of the public-key
user to that key-pair holder
possibly via other intermediate
certification authorities

PKI Trust Hierarchy
" In practice, it is unrealistic to have an “universial” Root CA world

wide, e.g. due to monopolistic, political concerns. So the trust
hierarchy typically begins at a non-root level of the tree with
multiple “root” trust anchors

Authentication

On the Internet, nobody knows you’re a dog
- by Peter Steiner, New York, July 5, 1993

By 2006:
“On the Internet, EVERYBODY knows you’re a dog, drinking Starbuck.”

Authentication of People:
To prove you are who you say you are

" By means of:
! What you know ?

e.g. password, your own HKID#
! What you have ?

e.g. A door-key, Secure token
! Where you are ?

e.g. caller-id, network (IP) address
! Who you are ?

e.g. fingerprint, other biometric: iris, retina patterns, voice
" Can combine more than one of the above, e.g. Automatic Teller

Machine (ATM) use a 2-factor authentication scheme:
! your ATM card + PIN

Design of Security Handshake for
Authentication and Common Pitfalls

Threats of Concern

" Offline password cracking attacks
" Replay
" Security of Password Database at server Vs. sending password

in clear across network
" Subsequent compromised of password to endanger previously

encrypted (and recorded by the attacker) traffic
" Man in the Middle attack

Authentication: another try
Protocol ap3.0: Alice says “I am Alice” and sends her

secret password to “prove” it.

playback attack: Trudy
records Alice’s packet

and later
plays it back to Bob

“I’m Alice”Alice’s
IP addr

Alice’s
password

OKAlice’s
IP addr

“I’m Alice”Alice’s
IP addr

Alice’s
password

Authentication: yet another try
Protocol ap3.1: Alice says “I am Alice” and sends her

encrypted secret password to “prove” it.

Failure scenario??

“I’m Alice”Alice’s
IP addr

encrypted
password

OKAlice’s
IP addr

Authentication: another try
Protocol ap3.1: Alice says “I am Alice” and sends her

encrypted secret password to “prove” it.

record
and

playback
still works!

“I’m Alice”Alice’s
IP addr

encryppted
password

OKAlice’s
IP addr

“I’m Alice”Alice’s
IP addr

encrypted
password

Authentication: yet another try
Goal: avoid playback attack

Drawbacks?

Nonce: number (N) used only once –in-a-lifetime
ap4.0: to prove Alice “live”, Bob sends Alice nonce, N. Alice

must return N, encrypted with shared secret key

“I am Alice”

N

K (N)A-B
Alice is live, and
only Alice knows
key to encrypt

nonce, so it must
be Alice!

Authentication: ap5.0

ap4.0 requires shared symmetric key
! can we authenticate using public key techniques?
ap5.0: use nonce, public key cryptography

“I am Alice”
N

Bob computes

K (N)priv
A

“send me your public key”

K pub
A

(K (N)) = Npriv
AK pub

A

and knows only Alice
could have the private
key, that encrypted N

such that
(K (N)) = Npriv

A
K pub

A

Also, what if “N” is some message (digest) that Alice does not want to sign
=> Each person uses multiple pairs of public/private keys ; one pair for
encryption/decryption ; the other pair for authentication/signing

ap5.0: security hole
Man in the middle attack: Trudy poses as Alice (to Bob) and as Bob (to

Alice)

I am Alice I am Alice
N

priv
K (N)T

Send me your public key

pub
K

T
priv

K (N)A

Send me your public key

pub
K

A

pubK (m)
T

priv
m = K (K (m))T

pub
T

Trudy gets

sends m to Alice
encrypted with

Alice’s public key

pubK (m)
A

priv
m = K (K (m))A

pub
A

N

Key Management

Key Management Problem:
Getting Help from Trusted Intermediaries

Symmetric (Secret) key
problem:

! How do two entities
establish shared secret key
over network?

Solution:
! trusted key distribution

center (KDC) acting as
intermediary between
entities

Public key problem:
! When Alice obtains

Bob’s public key (from
web site, e-mail,
diskette), how does she
know it is Bob’s public
key, not Trudy’s?

Solution:
! Digital Certificate Issued

by trusted certification
authority (CA)

Key Distribution Center (KDC)

! Alice, Bob need a shared symmetric key.
! KDC: server shares different secret key with each

registered user (many users)
! Alice, Bob know own symmetric keys, KA-KDC KB-KDC , for

communicating with KDC.

KB-KDC

KX-KDC

KY-KDC

KZ-KDC

KP-KDC

KB-KDC

KA-KDC

KA-KDC
KP-KDC

KDC

Key Distribution Center
(KDC)

" Responsible for distributing keys to pairs of users (hosts,
processes, applications)

" Each user must share a unique key, the master key, with the
KDC
! Use the master key to communicate with KDC to get a

temporary session key for establishing a secure “session”
with another user

! Master keys are distributed in some non-cryptographic ways

KDC Operating Principles

a) Overall concept

b) First Refinement

Inter-working between multiple KDC domains

